Comparison of N- and P/Q-type voltage-gated calcium channel current inhibition.

نویسندگان

  • K P Currie
  • A P Fox
چکیده

Activation of N- and P/Q-type voltage-gated calcium channels triggers neurotransmitter release at central and peripheral synapses. These channels are targets for regulatory mechanisms, including inhibition by G-protein-linked receptors. Inhibition of P/Q-type channels has been less well studied than the extensively characterized inhibition of N-type channels, but it is thought that they are inhibited by similar mechanisms although possibly to a lesser extent than N-type channels. The aim of this study was to compare the inhibition of the two channel types. Calcium currents were recorded from adrenal chromaffin cells and isolated by the selective blockers omega-conotoxin GVIA (1 microM) and omega-agatoxin IVA (400 nM). The inhibition was elicited by ATP (100 microM) or intracellular application of GTP-gamma-S. It was classified as voltage-sensitive (relieved by a conditioning prepulse) or voltage-insensitive (present after a conditioning prepulse). The voltage-insensitive inhibition accounted for a 20% reduction of both currents, whereas the voltage-sensitive inhibition reduced the N-type current by 45% but the P/Q-type current by 18%. However, the voltage dependence of the inhibition, the time course of relief from inhibition during a conditioning prepulse, and the time course of reinhibition after such a prepulse showed few differences between the N- and P/Q-type channels. Assuming a simple bimolecular reaction, our data suggest that changes in the kinetics of the G-protein/channel interaction alone cannot explain the differences in the inhibition of the N- and P/Q-type calcium channels. The subtle differences in inhibition may facilitate the selective regulation of neurotransmitter release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VIP AND PACAP INHIBIT L-, N- AND P/Q-TYPE Ca CHANNELS OF PARASYMPATHETIC NEURONS IN A VOLTAGE INDEPENDENT MANNER

In this study, we investigated the effects of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide 1-38 (PACAP) on the voltagegated calcium currents in hamster submandibular ganglion neurons. VIP and PACAP inhibited the high threshold voltage-gated calcium current in a voltage-independent and a concentration-dependent manner via the G protein-mediated p...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

VIP and PACAP inhibit L-, N- and P/Q-type Ca2+ channels of parasympathetic neurons in a voltage independent manner.

In this study, we investigated the effects of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide 1-38 (PACAP) on the voltage-gated calcium currents in hamster submandibular ganglion neurons. VIP and PACAP inhibited the high threshold voltage-gated calcium current in a voltage-independent and a concentration-dependent manner via the G protein-mediated ...

متن کامل

Calcium-activated potassium channels are selectively coupled to P/Q-type calcium channels in cerebellar Purkinje neurons.

Cerebellar Purkinje neurons fire spontaneously in the absence of synaptic transmission. P/Q-type voltage-gated calcium channels and calcium-activated potassium channels are required for normal spontaneous activity. Blocking P/Q-type calcium channels paradoxically mimics the effects of blocking calcium-activated potassium channels. Thus, an important function of the P/Q-type calcium channels is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 12  شماره 

صفحات  -

تاریخ انتشار 1997